a2 United States Patent

Yin et al.

US009460207B2

US 9,460,207 B2
Oct. 4, 2016

(10) Patent No.:
45) Date of Patent:

(54)

(735)

(73)

")

@

(22)

(65)

(1)
(52)

(58)

(56)

8,239,751 B1* 82012 Rochelle et al. 715/220
2006/0173834 AL* 8/2006 Brill et al. wovvvvvvevereerrnnnns 707/4
2007/0094285 Al 4/2007 Agichtein et al.

2007/0150800 AL* 6/2007 Betz et al. oo..oovvveren. 715/500
2009/0313247 Al 12/2009 Hogue
2010/0082694 ALl* 4/2010 Corsi et al.ovvveerennn. 707/798
2010/0185654 Al* 7/2010 Fortuna GO6F 17/30011
707/769
2010/0325133 Al* 12/2010 Rounthwaite et al. 707/759
104
WEB PAGE 10
1-DIMENSIONAL 102
TABLE
ATTRIBUTE -« »| LOCATOR
IDENTITY/ COMPONENT
ATTRIBUTE
VALUE ~ 0
INFERENCE
B COMPONENT
ENTITY IDENTITY
™~
~——
110 12

AUTOMATED DATABASE GENERATION
FOR ANSWERING FACT LOOKUP QUERIES

Inventors: Xiaoxin Yin, Bothell, WA (US);
Wenzhao Tan, Redmond, WA (US);
Chao Liu, Redmond, WA (US)

Assignee: Microsoft Technology Licensing, LLC,
Redmond, WA (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 856 days.

Appl. No.: 12/962,677

Filed: Dec. 8, 2010

Prior Publication Data

US 2012/0150838 Al Jun. 14, 2012

Int. CL.

GOG6F 17/30 (2006.01)

U.S. CL

CPC e GO6F 17/30864 (2013.01)
Field of Classification Search

USPC 707/711
See application file for complete search history.

References Cited

U.S. PATENT DOCUMENTS

OTHER PUBLICATIONS

“GoogleLookup: Creating a Google Fact Engine Directory”,
Retrieved at << http://blog.ouseful.info/2008/10/16/ >>, Oct. 16,
2008, pp. 1-9.

Agichtein, et al., “Question Answering over Implicitly Structured
Web Content”, Retrieved at << http://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.84.9981&rep=repl&type=pdf >> ~ACM
International Conference on Web Intelligence, Nov. 2-5, 2007, pp.
1-8.

Ahn, et al., “Quartz: A Question Answering System for Dutch”,
Retrieved at << http://staff.science.uva.nl/~mdr/ Publications/Files/
clef2006-proc-qa.pdf >>, Evaluation of Multilingual and Multi-
modal Information Retrieval, 7th Workshop of the Cross-Language
Evaluation Forum, CLEF, Sep. 20-22, 2006, pp. 362-371.
Defazio, Aaron., “Natural Language Question Answering Over
Triple Knowledge Bases”, Retrieved at << http://cs.anu.edu.au/
student/projects/09S2/Reports/Aaron%20Defazio.pdf >>, Oct. 30,
2009, pp. 1-42.

Raghavan, et al., “Evaluating Entity Models on the TREC Question
Answering Task”, Retrieved at << http://maroo.cs.umass.edu/pub/
web/getpdf.php?id=484 >>, CIIR Technical Report, 2004, pp. 1-9.

(Continued)

Primary Examiner — Amresh Singh
(74) Attorney, Agent, or Firm — Alin Corie; Sandy
Swain; Micky Minhas

(57) ABSTRACT

Technologies pertaining to fact lookup queries are described
herein. A relational database is automatically built by
extracting attribute identities and attribute values from a one
dimensional table, wherein the one dimensional table does
not include an entity identity that corresponds to the attribute
identity and the attribute value. The entity identity is
inferred, and the attribute value is indexed in a relational
database by the entity identity and the attribute identity.
When a query is issued by a user that includes the entity
identity and the attribute identity, the corresponding attribute
value in the relational database is returned to the user.

20 Claims, 10 Drawing Sheets

/ 100

ATTRIBUTE IDENTITY 18
AND ATTRIBUTE
VALUE
DATA STORE
RELATOR -
COMPONE >
NT RELATIONAL
DATABASE
ENTITY 114
IDENTITY

1167;’)

US 9,460,207 B2
Page 2

(56) References Cited

OTHER PUBLICATIONS

Cucerzan, et al., “Factoid Question Answering over Unstructured
and Structured Web Content”, Retrieved at << http://citeseerx.ist.
psu.edu/viewdoc/download?doi=10.1.1.61.1078&rep=repl
&type=pdf >>, Proceedings of the Fourteenth Text REtrieval Con-
ference, TREC, Nov. 15-18, 2005, pp. 1-6.

Brill, et al,, “An analysis of the AskMSR question-answering
system”, Retrieved at << http://research.microsoft.com/en-us/um/
people/sdumais/EMNLP_ Final.pdf >>, 2002, pp. 1-8.

Harabagiu, et al., “Experiments with Open-Domain Textual Ques-
tion Answering”, Retrieved at << http://acl.ldc.upenn.edu/C/C0O0/
C00-1043.pdf >>, 18th International Conference on Computational
Linguistics, Proceedings of the Conference, Jul. 31-Aug. 4, 2000,
pp. 292-298.

Tellex, et al., “Quantitative Evaluation of Passage Retrieval Algo-
rithms for Question Answering.”, Retrieved at << http://groups.
csail.mit.edu/infolab/publications/Tellex-etal-SIGIR03 .pdf >>, Pro-

ceedings of the 26th Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval, Jul.
28-Aug. 1, 2003, pp. 1-7.

Cafarella, et al., “Uncovering the relational web.”, Retrieved at
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.140.
5666&rep=repl&type=pdf >>, 11th International Workshop on the
Web and Databases, WebDB, Jun. 13, 2008, pp. 1-6.

Wang, et al., “A machine learning based approach for table detection
on the web.”, Retrieved at << http://www.research.ibm.com/people/
Jiyhw/www2002.pdf >>, 2002, pp. 1-9.

Yin, et al.,, “Automatic Extraction of Clickable Structured Web
Contents for Name Entity Queries.”, Retrieved at <<http://research.
microsoft.com/pubs/120887/fp0254-yin.pdf >>, Proceedings of the
19th International Conference on World Wide Web, Apr. 26-30,
2010, pp. 1-10.

Cui, et al., “Probabilistic query expansion using query logs”,
Retrieved at << http://citeseerx.ist.psu.edu/viewdoc/download-
?d0i=10.1.1.5.6773&rep=repl &type=pdf >>, Proceedings of the
eleventh international conference on World Wide Web, May 7-11,
2002, pp. 1-8.

* cited by examiner

US 9,460,207 B2

Sheet 1 of 10

Oct. 4, 2016

U.S. Patent

IO

ALLLNAAIL ALLINA

I~

ATVA
HLNAIALLY
/ALLLNAdI
ALNdIEALLY

47dVv.L
TVNOISNAIA-T

Tl
911 011
|/ I//
ALLLNAAI
pIl ALLLNA LNANOdNOD | _
ISVAVIVA |/ ¥ DONTUAANL [>
TYNOILLVITY) INANOIINOD 801 —~{__|
- AOLV1Td
TIOLS VIVd \
A INANOJNOD
ANTVA dOLVOO1 ‘ >
JLNANLLY ANV
ALLLNAAI L0914 LLY |\
QI 701 1
901 —1

001 el

dD0vd d9M

bO1 -~

US 9,460,207 B2

Sheet 2 of 10

Oct. 4, 2016

U.S. Patent

¢ O

P Ado0d
90¢]
P d4avaH
02]
p ATLLL
202 _
4DVvd 9dMm
701 \
H 017 ~
ALLLNAAI
ALLLNA LINANOdNOD SNOILDATAS
- ATIVANOD Dl aovd
|\\ gaM/SATIANO
(4 LNANOdIWOD
AINTIAANI THOLS VIVA
00T _ [
481 |\

80T H

US 9,460,207 B2

Sheet 3 of 10

Oct. 4, 2016

U.S. Patent

¢ DId

W A9Vd
qam
o ®
o 0€€ o
® ®
€ 49Vd €
gaMm N gee A4A00
a8 S 90¢
9¢¢
7Aaovd
qam
T
0
0Z¢
1490vd I
Addn0
e \ gam _ -
01¢ 206

US 9,460,207 B2

Sheet 4 of 10

Oct. 4, 2016

U.S. Patent

b OId

-

Y01 I\

\lo:

ALLINAAI ALLLNA

dDVd ddMm

S

=

0ov I\

ALLLNAJI
ALLLNA

LNANOdINOD
HAAZATVNY VINHHDS

LNANOdINOD

AIONHYHINI

'« b SYWAHDS
NAMON

OIS VIVd

NZI\

e —

Yor wl\\\

90t

US 9,460,207 B2

Sheet 5 of 10

Oct. 4, 2016

U.S. Patent

SO

00¢ I\

° °
° °
° °
Z AN TVA A1N4dldLLV A Al 4LN9IILLY ‘W Al ALLLNA
° °
° °
° °
N ANTVA ALNdI-[LLV N dI 4LN9rLLY ‘T dI ALLLNA
° °
° °
° °
CANTVA 4LN9IHLLY TAldLNgrdLLY ‘T dI ALLLNA
[ANTVA ALO9IHLLY [dI 4LN9r¥LLY ‘T dI ALLLNA
ASVAVLVA TVNOILVTAY

US 9,460,207 B2

Sheet 6 of 10

Oct. 4, 2016

U.S. Patent

\\\}
SNOLLDATAS
a0vd N
daM/SArddno | N__ 012
YOLS VLVA
(807
INANOIINOD YOLVIOT
SLNTIVAINDA 4.LN9Id.LLY /9
|\\
809 INANOAINOD YOLVIO'T
% SINITVYAINOT ALLLNT asvav.ivd
909 —1 TVNOLLY 1Y
INANOJNOD P
| ¥HAOWAN A1YOI14Nd
09 —1 TAOLS VLVA
LNANOdINOD YANVIT) _ -
P —
(\\\
009 \ 209 —"

US 9,460,207 B2

Sheet 7 of 10

Oct. 4, 2016

U.S. Patent

L "OIA

ﬁshl\\\

ASv4av.Lvd
TVNOILVTEY L

LSIT HIODIAEL

d90LS VLVd

=
WL~ a

N\

INANOdINOD
JOLOTTAS ANN'TVA d1NdId.LLY

-

SLINSdY

HOYUVAS

LINANOdINOD HOUVAS

QK.\\\\

Addand

U.S. Patent Oct. 4, 2016 Sheet 8 of 10 US 9,460,207 B2

(START Y /—
Y

804
SEARCH SOURCE CODE OF WEB PAGE FOR | _
ONE-DIMENSIONAL TABLE -
808
806
9 Lol
TABLE? INDEX
A
YES 810
EXTRACT ATTRIBUTE IDENTITY AND
ATTRIBUTE VALUE FROM THE 1-
DIMENSIONAL TABLE

812

) 4
INFER AN ENTITY IDENTITY THAT
CORRESPONDS TO THE ATTRIBUTE IDENTITY
AND THE ATTRIBUTE VALUE

814

) 4
STORE THE ENTITY IDENTITY, THE
ATTRIBUTE IDENTITY, AND THE ATTRIBUTE
VALUE IN A RELATIONAL DATABASE

YES

818

FIG. 8

U.S. Patent Oct. 4, 2016 Sheet 9 of 10 US 9,460,207 B2

902
o

904 \
RECEIVE A FACTUAL QUERY
906 \ l
COMPARE KEYWORDS IN THE QUERY
WITH KEYWORDS IN A TRIGGER LIST
908 910
KEYWORDS IN PERFORM CONVENTIONAL
TRIGGER LIST? WEB SEARCH
912 \

SEARCH RELATIONAL DATABASE USING
KEYWORDS IN THE TRIGGER LIST

l

OUTPUT ATTRIBUTE VALUE
CORRESPONDING TO KEYWORDS IN THE
TRIGGER LIST AS AN INSTANT ANSWER

914
N

916

END -t

FIG. 9

U.S. Patent Oct. 4, 2016

Sheet 10 of 10 US 9,460,207 B2

/— 1000

1002~ 1004 ~
PROCESSOR MEMORY
T 1006 — T
INPUT é OUTPUT
INTERFACE INTERFACE
1010—"" 1005 —.| DATA STORE 1012 —"
\/

FIG. 10

US 9,460,207 B2

1
AUTOMATED DATABASE GENERATION
FOR ANSWERING FACT LOOKUP QUERIES

BACKGROUND

Conventional search engines support a variety of different
types of queries. These queries include informational que-
ries, navigational queries and transactional queries. An
informational query is a query submitted by a user, wherein
the user is searching for general information about some
entity. An example of an informational query may be “Wash-
ington”, where the issuer of the query desires to obtain
information about the state of Washington. A navigational
query is a query issued by the user when the user wishes to
find a particular web site or web page. For example, a user
wishing to be provided with a web page corresponding to a
bank may issue a query of the name of the bank. A
transactional query is a query that reflects the intent of the
issuer of the query to perform a particular action like
purchasing an automobile, downloading a screensaver, or
the like.

Search engines are currently being adapted to additionally
support fact lookup queries. A fact lookup query is a query
that is issued by a user when the intent of the user is to
acquire a certain fact about a particular entity. When a fact
lookup query is submitted by a user, it is desirable to present
a single correct answer to the user rather than a plurality of
web pages that may include the correct answer. Examples of
fact lookup queries include “population of the state of
Washington,” “date of birth of Babe Ruth,” etc. Answering
these fact lookup queries through utilization of a search
engine has been widely studied in information retrieval and
natural language processing. Currently, the focus on answer-
ing fact lookup queries has been on natural language pro-
cessing.

Utilizing natural language processing to perform searches
based on fact lookup queries has proven to be a suboptimal
solution for a variety of reasons. For example, issuers of
queries oftentimes do not submit queries that conform to
natural language processing. For instance, rather than issu-
ing the query “what is the capital of Morocco?” searchers
tend to issue queries such as “capital of Morocco.” In this
case, since the user has not issued an appropriate natural
language query, natural language processing may not pro-
vide an optimal result. Additionally, most query answering
systems based on natural language processing do not have
the ability to distinguish fact lookup queries from other
queries, and try to answer every query as a fact lookup
query. In web search, however, a relatively small portion of
queries are fact lookup queries, while the majority of queries
are navigational queries, transactional queries, or informa-
tional queries. If a web search engine assumes that each
issued query is a fact lookup query, the search engine will
often provide irrelevant search results to the user.

SUMMARY

The following is a brief summary of subject matter that is
described in greater detail herein. This summary is not
intended to be limiting as to the scope of the claims.

Described herein are various technologies pertaining to
automatically generating a relational database that com-
prises data that can be utilized to recognize and answer fact
lookup queries. Additionally, described herein are various
technologies pertaining to receiving a query and providing
an instant answer to the query through utilization of the
aforementioned relational database. To automatically gen-

20

30

35

40

45

55

60

2

erate such a relational database, source code of a plurality of
web pages (e.g., web pages indexed by a search engine) can
be received and analyzed. A web page in the plurality of web
pages may include a one dimensional table with two col-
umns and one or more rows, wherein each row of the one
dimensional table includes an identity of an attribute that
corresponds to a particular entity and a value for such
attribute. It is to be ascertained, however, that the one
dimensional table is free of (does not include) an identity of
the entity. The attribute identity and the attribute value can
be extracted from the one dimensional table, and the entity
identity that corresponds to the attribute identity and the
attribute value can be inferred from other parts of the web
page.

The entity identity can be inferred through utilization of
a variety of approaches. In a first example, query logs can be
analyzed to ascertain which queries were issued by users to
reach the web page that includes the one dimensional table.
Keywords in such queries can be analyzed and compared
with keywords in the URL of the web page, keywords in the
title of the web page, keywords in the header of the web
page, keywords in the body of the web page, etc. If there is
significant commonality between keywords in the query and
keywords resident on the web page, it can be inferred that
the commonly occurring keywords represent the entity iden-
tity. Another exemplary approach for inferring an entity
identity pertains to learning a schema (which can be referred
to as an “HTML wrapper”) corresponding to a particular
web site or type of web page and inferring the entity identity
based at least in part upon this known schema. Pursuant to
an example, a web site may be utilized to sell a plurality of
different products, and each web page in the web site may
correspond to a different product. It can be learned (e.g.,
automatically or manually) that an entity identity is consis-
tently at a particular location in the source code of web pages
that belong to the web site. Thus, by having knowledge of
the schema of similar web pages, the entity identity corre-
sponding to the web page can be inferred.

This extraction of attribute identities and attribute values
and inference of entity names can be undertaken for a
plurality of web pages, thus resulting in the creation of a
relatively large source of data. This collection of data can be
arranged in the form of a relational database such that
attribute values are indexed by, for instance, entity identities
and attribute identities. Accordingly, if a user entered the
query “population of Ohio,” then the attribute identity is
population, the entity identity is Ohio and an attribute value
corresponding to that entity identity and attribute identity
can be retrieved from the relational database.

To increase robustness of a search engine that is config-
ured to answer fact lookup queries, entity identities and
attribute identities that are equivalent to those that are
extracted from web pages and/or inferred can be inferred.
For example, the entity identity Ohio may be identical to the
entity identity OH. Thus, for instance, a user that issues a
query “population of Ohio” is searching for the same factual
information as a user that issues a query “population of OH.”
As will be described herein, query logs can be analyzed to
determine equivalent entity identities. Furthermore and
similarly, two different attribute identities may be directed
toward the same attribute. In an example, a user that issues
a query “birth date of Babe Ruth” is searching for the same
information as a user who issues a query “date of birth of
Babe Ruth.” Equivalent attributes can be located by review-
ing the relational database and locating different attribute
identities that usually have the same or substantially similar
attribute values for the same entity identity.

US 9,460,207 B2

3

In addition, in some instances, multiple different data
sources may provide different attribute values for a substan-
tially similar entity identity and attribute identity. For
example, a first data source may indicate that the population
of the state of Ohio is 11.54 million people while a second
data source may indicate that the population of the state of
Ohio is 11,542,645. Still another data source may have
rounded up and indicated that the population of the state of
Ohio is 12 million. Techniques are described herein that
pertain to selecting a single attribute value and providing
such attribute value as an answer to a fact lookup query.

Other aspects will be appreciated upon reading and under-
standing the attached figures and description.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a functional block diagram of an exemplary
system that facilitates automatically generating data that can
be used for answering fact lookup queries.

FIG. 2 is a functional block diagram of an exemplary
system that facilitates inferring an entity identity that cor-
responds to an attribute identity and attribute value.

FIG. 3 is an exemplary click graph.

FIG. 4 is a functional block diagram of an exemplary
system that facilitates inferring an entity identity that cor-
responds to an attribute identity and attribute value.

FIG. 5 is an exemplary relational database.

FIG. 6 is a functional block diagram of an exemplary
system that facilitates cleansing a relational database.

FIG. 7 is a functional block diagram of an exemplary
system that facilitates receiving a fact lookup query and
outputting an instant answer to such fact lookup query.

FIG. 8 is flow diagram that illustrates an exemplary
methodology for generating a relational database that is
configured for utilization in connection with answering fact
lookup queries.

FIG. 9 is a flow diagram that illustrates an exemplary
methodology for outputting an attribute value that corre-
sponds to an attribute identity and entity identity provided
by a user in a query.

FIG. 10 is an exemplary computing system.

DETAILED DESCRIPTION

Various technologies pertaining to building a database
that can be employed in connection with answering fact
lookup queries will now be described with reference to the
drawings, where like reference numerals represent like ele-
ments throughout. In addition, several functional block
diagrams of exemplary systems are illustrated and described
herein for purposes of explanation; however, it is to be
understood that functionality that is described as being
carried out by certain system components may be performed
by multiple components. Similarly, for instance, a compo-
nent may be configured to perform functionality that is
described as being carried out by multiple components.
Additionally, as used herein, the term “exemplary” is
intended to mean serving as an illustration or example of
something, and is not intended to indicate a preference.

With reference to FIG. 1, an exemplary system 100 that
facilitates building a relational database that can be
employed in connection with answering fact lookup queries
is illustrated. A fact lookup query is a query that is provided
to a search engine where the intent of a user is to learn some
particular fact about an attribute of an entity. Examples of
fact lookup queries include “population of Ohio” and
“height of Babe Ruth.” In the first example, the entity

20

30

35

40

45

50

55

60

4

identity is “Ohio” and the attribute identity is “population.”
In the second example, the entity identity is “Babe Ruth”
and the attribute identity is “height.” It can be ascertained
that these fact lookup queries are markedly different from
navigational queries, transactional queries, and/or informa-
tional queries. Navigational queries are queries issued by a
user for the purpose of navigating to a particular web page,
such as the web page of a bank of the user. A transactional
query is a query issued by the user for the purpose of
performing some sort of transaction, such as purchasing an
automobile. An informational query is a query issued by the
user for the purpose of obtaining general information about
a subject. For example, an informational query may be
“Babe Ruth,” where the issuer of the query wishes to obtain
general information about Babe Ruth. It can be ascertained
that it may be desirable to the issuer of a fact lookup query
to be provided with an instant answer—that is, a single
answer to the fact lookup query, rather than a plurality of
links to web pages that may include such answer.

The system 100 comprises a locator component 102 that
can receive a web page 104. More specifically, the locator
component 102 can receive source code of the web page
104. The source code of the web page 104 includes a one
dimensional table 106, wherein the one dimensional table
comprises an attribute identity and an attribute value 108.
For instance, the one dimensional table 106 can include at
least one row and two columns, wherein the first column
comprises the attribute identity and the second column
comprises the attribute value. The one dimensional table
106, however, is free of (does not include) an entity identity
that corresponds to the attribute identity and attribute value
108 in the one dimensional table 106. In an example, the
source code of the web page 104 may include an entity
identity 110 that corresponds to the attribute identity and
attribute value 108, wherein the entity identity 110 may be
in a URL of the web page 104, a title of the web page 104,
a header of the web page 104, or in a body of the web page
104. For instance, an attribute identity may be “height” and
an attribute value may be 5'10". In another example, the
attribute identity may be “population” and the attribute value
may be 3.5 million. Many of these one dimensional tables
that include attribute identities and attribute values are
available on the web, but due to lack of entity identity
corresponding thereto, have heretofore not been employed
in connection with answering fact lookup queries.

The system 100 further comprises an inference compo-
nent 112 that can infer the entity identity 110 that corre-
sponds to the attribute identity and attribute value 108. The
inference component 112 can infer the entity identity 110
utilizing a variety of approaches that will be described in
greater detail herein. A first approach involves reviewing
queries submitted by users to a search engine to reach the
web page 104, and comparing content of the queries with the
URL of the web page 104, a title of the web page 104, a
header of the web page 104 and/or content of the web page
104 to locate commonalities between keywords in the que-
ries and keywords used in association with the web page
104. Another exemplary approach involves having some
knowledge of a schema of the web page 104 and inferring
the entity identity 110 based at least in part upon the
knowledge of the schema.

A relater component 114 can cause the entity identity 110
inferred by the inference component 112 and the attribute
identity and the attribute value 108 extracted by the locator
component 102 to be retained as corresponding entries in a
relational database 116 that resides in a data store 118. For
instance, the attribute value can be indexed by the entity

US 9,460,207 B2

5

identity 110 and the attribute identity (the entity identity 110
and the attribute identity can be indices into a database).
Thus, in an example, if the entity identity is “Babe Ruth,” the
attribute identity is “height,” and the attribute value is 62",
then the value 62" may be indexed by “Babe Ruth” and
“height.”

While the system 100 has been illustrated and described
as extracting one dimensional tables from a single web page
and inferring an entity identity for the attribute identity and
attribute value 108 in the one dimensional table 106, it is to
be understood that the locator component 102 and the
inference component 112 can perform the above described
operations over a plurality of web pages. For instance, the
locator component 102, the inference component 112, and
the relater component 114 can perform the above-described
functions over each web page that is indexed by a particular
search engine. When locating one dimensional tables 106
that include attribute identities and attribute values, the
locator component 102 can recognize which one dimen-
sional tables include relevant information. For example,
many web sites include numerous pages, wherein such
pages may include contents in substantially similar formats.
The locator component 102 can treat numerous pages
belonging to a web site that has identical or similar formats
as a singular data source.

The locator component 102 can analyze data from differ-
ent pages in the data source and can filter out many false
positive one dimensional tables. For instance, an HTML
page may include tables for HTML display purposes. In an
example, the locator component 102 can ascertain that an
identical table appears in many pages belonging to a data
source and can infer that these one dimensional tables do not
provide any information that can be utilized in connection
with answering fact lookup queries. Furthermore, the locator
component 102 can determine that a table corresponding to
a web page in the data source includes attributes that appear
in only a single page, and can therefore infer that it is
unlikely to be a one dimensional table with an attribute
identity/attribute value because an attribute is generally
associated with many entities of a same type.

When execution of the system 100 is completed over web
pages indexed by a search engine, the resultant relational
database 116 comprises a large amount of information. This
information includes a plurality of attribute values that are
indexed by corresponding entity identities and attribute
identities.

With reference now to FIG. 2, an exemplary system 200
that facilitates inferring an identity of an entity based at least
in part upon previous queries proffered by users to arrive at
the web page 104 is illustrated. The web page 104 may
comprise a URL, a title 202 of the web page 104, a header
204 of the web page 104, a body 206 of the web page 104,
amongst other data. Generally, even though an entity iden-
tity corresponding to an attribute identity and attribute value
in a one dimensional table is not included in such table, the
entity identity will be included somewhere else in the web
page 104. In the example shown in FIG. 2, the inference
component 112 can access a data store 208 that comprises
queries and web page selections 210. More specifically, the
queries and web page selections 210 include queries that are
issued by users of a search engine that were employed by
such users to locate and access the web page 104.

The inference component 112 comprises a compare com-
ponent 212 that compares words in the title 202, header 204
and/or body 206 of the web page 104 with keywords in
queries issued by users to access the web page 104. For
instance, if the web page 104 is directed toward the life and

10

15

20

25

30

35

40

45

50

55

60

65

6

baseball statistics of Babe Ruth, then users of the search
engine may issue queries that include the name Babe Ruth
when locating the web page 104. The compare component
212 can analyze the queries issued by the users for keywords
occurring most frequently in queries issued by users to
access the web page 104. The compare component 212 may
then compare such keywords with words in the title 202,
header 204, body 206 or other portion of the web page 104
with the frequently occurring keywords in the queries of
users. If the frequently occurring keywords used in the
queries are included in the web page 104, then the inference
component 112 can infer that such words in the web page
104 and the keywords in the query represent the entity
identity that corresponds to the attribute identity and attri-
bute value located by the locator component 102 (FIG. 1).
As described above, this entity identity can be stored in a
relational database in relation to an attribute identity and
attribute value extracted from a one dimensional table that
exists in the web page 104.

Turning now to FIG. 3, an exemplary click graph 300 is
illustrated. The click graph 300 is shown for exemplary
purposes to illustrate how queries issued to a search engine
are related to web pages returned by such search engine. For
instance, the click graph 300 comprises n queries 302-308
that have been issued to a search engine by users of such
search engine. The click graph 300 further comprises m web
pages 310-316, wherein such web pages 310-316 have been
clicked by users of the search engine subsequent to users
issuing one or more of the queries 302-308 to the search
engine. Thus, for instance, users that issued the first query
302 are shown to have clicked the nth web page 316, the
second web page 312 and the first web page 310.

As shown, the click graph 300 is a bipartite graph,
wherein the bipartite graph comprises a plurality of edges
318-330. These edges can be weighted to indicate a number
of'issuances of the query by users and a number of clicks on
web pages that are associated with such queries.

Pursuant to an example, the third web page 314 may be
a web page of interest, wherein it is desirable to infer an
entity identity pertaining to the third web page 314. As can
be ascertained, the second query 304, the third query 306,
and the nth query 308 have been issued by users of the
search engine to locate and select the third web page 314.
These queries may utilize common keywords across such
queries, and the third web page 314 may include such
common keywords in the URL, header, title, or body of the
web page. By comparing the keywords of the queries 304,
306 and 308 with the content of the web page 314, an entity
identity corresponding to the web page 314 can be inferred.
For instance, the second query 304 may be Babe Ruth home
runs, the third query 306 may be Babe Ruth RBIs, and the
nth query 308 may be Babe Ruth New York Yankees. The
content of the third web page 314 may also include the name
Babe Ruth. Thus, since the keywords “Babe Ruth” fre-
quently occur in the queries 304, 306, and 308 utilized to
access the web page 314, and the web page includes the
keywords “Babe Ruth”, it can be inferred that the entity
identity corresponding to the web page 314 is Babe Ruth.

Referring now to FIG. 4, another exemplary system 400
that facilitates inferring an entity identity is illustrated. The
system 400 comprises the inference component 112, which
is configured to infer an entity identity corresponding to an
attribute identity and an attribute value extracted from a one
dimensional table in the web page 104. In this example, it is
assumed that the entity identity 110 is existent in content of
the web page 104. The inference component 112 can com-
prise a schema analyzer component 402 that can infer the

US 9,460,207 B2

7

entity identity 110 based at least in part upon a known
schema (e.g., a known HTML wrapper) that corresponds to
web page 104. More specifically, the system 400 can com-
prise a data store 404 that includes one or more known
schemas for web pages. For instance, the web page 104 may
belong to a web site, wherein pages belonging to the web site
have a known, common schema. The schema of the web site
can be manually expressed by an individual or can be
automatically learned through an analysis of web pages
belonging to a same web site (domain).

In an example, an online collaborative dictionary may
have several web pages that pertain to different entities. It
can be known, through a known schema, that each web page
belonging to the online collaborative dictionary has the
entity identity at a particular position in the title of the web
page. Accordingly, the schema analyzer component can
access the known schemas 406 and can infer the entity
identity 110 based at least in part upon a known schema that
corresponds to the web page 104. It is to be understood that
either the system 200 (FIG. 2) and/or the system 400 may be
used in connection with inferring entity identities from web
pages. For instance, the system 200 may be utilized when a
plurality of queries have been issued to locate a web page of
interest and the system 400 may be utilized when the web
page 104 has few queries that have been used to locate such
web page 104 through utilization of a search engine.

With reference now to FIG. 5, an exemplary relational
database 500 is illustrated. The relational database 500
comprises a plurality of entries, wherein such entries can be
attribute values, for example. These attribute values can be
indexed by entity identities and attribute identities. Thus, for
instance, a first attribute value can be indexed by a first entity
identity and a first attribute identity while a second attribute
value can be indexed by the first entity identity and a second
attribute value. In an example, the first entity identity may be
Babe Ruth, the first attribute identity may be height and the
second attribute identity may be weight. Therefore, the first
attribute value can be the height of Babe Ruth (6' 2") and the
second attribute value can be the weight of Babe Ruth (e.g.,
215 1bs.). Thus, a single entity identity may have multiple
attributes corresponding thereto, and the relational database
500 can comprise attribute values for multiple entity iden-
tities. Accordingly, if one dimensional tables are located
across web pages indexed by a search engine and contents
thereof are extracted, and the entity identities are inferred for
those one dimensional tables, the relational database 500 can
include a relatively large amount of data.

Now referring to FIG. 6, an exemplary system 600 that
facilitates cleaning contents of the relational database 116
retained in the data store 118 is illustrated. As described
above, the relational database 116 can comprise a large
number of entries. The system 600 may comprise a cleaner
component 602 that can be configured to remove duplicate
entries in the relational database 116, identify equivalent
entity identities to those in the relational database 116, and
identity equivalent attribute identities to those in the rela-
tional database 116. The cleaner component 602 comprises
a duplicate remover component 604 that can remove dupli-
cate entries from the relational database 116. For example,
multiple web pages may relate to Babe Ruth and may have
his height and weight described thereon. Therefore it can be
ascertained that multiple entries can exist in the relational
database 116 that have identical entity identities, attribute
identities and attribute values. The duplicate remover com-
ponent 604 can remove the duplicate entries to reduce the
size of the relational database 116.

10

15

20

25

30

35

40

45

50

55

60

65

8

The cleaner component 602 may further comprise an
entity equivalents locator component 606 that is configured
to determine equivalent entity identities (including equiva-
lent entity identities in the relational database 116 and entity
identities not in the relational database 116). For instance, a
single entity may have multiple entity identities correspond-
ing thereto, wherein each entity identity refers to the same
entity. For instance, the entity Babe Ruth can be identified by
entity identities Babe Ruth, B. Ruth, George Ruth, George
Herman Ruth, The Babe, etc. Therefore, a user that issues a
fact lookup query pertaining to Babe Ruth may use any of
such entity identities when performing the search. The entity
equivalents locator component 606 can analyze the queries
and web page selections 210 in the data store 208 to infer
equivalent entity identities based upon previous queries
issued by users to access certain web pages. Specifically, the
entity equivalents locator component 606 can review queries
issued by users of a search engine that are utilized to access
a relatively small subset of web pages. For example, the
queries “Babe Ruth” and “The Babe” are similar queries
because users click on similar sets of result URLs for such
queries. Accordingly, the entity equivalents locator compo-
nent 606 can detect that the terms “The Babe” and “Babe
Ruth” are equivalent identities.

The cleaner component 602 can further include an attri-
bute equivalents locator component 608 that is configured to
locate equivalent attribute identities. For instance, the attri-
bute “date of birth” may be queried by users as “date of
birth,” “birth date,” “DOB,” etc. It is desirable to identify
equivalent attribute identities to provide robust search cov-
erage, such that if a first user issues the query “Babe Ruth’s
date of birth” and a second user issues the query “Babe
Ruth’s birth date,” both queries will be recognized as fact
lookup queries and a (same) correct answer to such fact
lookup queries will be provided to both users. The attribute
equivalents locator component 608 can, in an example,
locate equivalent attributes by analyzing contents of the
relational database 116. The attribute equivalents locator
component 608 can search for an entity identity or entity
identities that have substantially similar attribute values for
different attribute identities. Since, for a single entity iden-
tity, it is highly unlikely that two different attributes will
have the same value, it can be inferred that the attribute
identities are equivalent attribute identities. In other words,
if two attribute identities are often associated with the same
value for a same entity, such attribute identities will be found
to be equivalent by the attribute equivalents locator com-
ponent 608.

Thus, in summary, the cleaner component 602 can modify
the relational database 116 such that attribute values are
indexed by different entity identities when such entity iden-
tities are equivalent and by different attribute identities when
such attribute identities are equivalent.

Referring now to FIG. 7, an exemplary system 700 that
facilitates providing an attribute value to a user responsive
to the user issuing a fact lookup query to the search engine
is illustrated. The system 700 comprises a search component
702 which, in an example, may be a search engine and/or an
algorithm utilized in a search engine. The search component
702 can receive a query that is issued by a user, wherein the
query can be a fact lookup query. The search component 702
comprises an attribute value selector component 704 that
selects an attribute value from the relational database 116
responsive to receipt of the query, wherein the attribute
value is selected based at least in part upon an entity identity
and attribute identity included in the query.

US 9,460,207 B2

9

Pursuant to an example, the attribute value selector com-
ponent 704 can analyze keywords in the query received by
the search component 702 and can recognize that the query
is a fact lookup query based at least in part upon the
keywords of the query. Pursuant to an example, the system
700 may include the data store 118, which can comprise a
trigger list 706. The trigger list 706 may be a list of entity
identities and attribute identities that are supported by the
search component 702. The attribute value selector compo-
nent 704 can compare keywords in the query with entity
identities and attribute identities in the trigger list 706. If the
query does not include an attribute identity and entity
identity that is in the trigger list 706, then the search
component 702 can perform a conventional web search, as
the query is most likely a transactional query or informa-
tional query. If, however, the attribute value selector com-
ponent 704 finds that keywords in the query match an entity
identity and attribute identity in the trigger list 706, then the
attribute value selector component 704 can ascertain that the
query is a fact lookup query and the attribute value selector
component 704 can access the relational database 116.

As discussed above, the relational database 116 includes
data extracted from multiple web pages. Different web pages
describing the same attribute for the same entity may
provide a different attribute value for such entities. For
example, a first web page may indicate that the population
of Ohio is 11.5 million, while a second web page may
indicate that the population of Ohio is 11.54 million, while
a third web page may indicate that the population of Ohio is
12 million. It may be desirable, however, to provide the
issuer of the query with a single value rather than each
different value for the entity and attribute of interest.
Accordingly, the attribute value selector component 704 can
be configured to select a particular attribute value to provide
to the issuer of the query.

In an example, the attribute value selector component 704
can locate all attribute values that correspond to the entity
identity and attribute identity in the query and can cluster
these values into clusters, such that similar attribute values
are grouped together. The attribute value selector component
704 may thereafter select the cluster that includes the
greatest number of attribute values. The attribute value
selector component 704 may then analyze the attribute
values in the selected cluster and can select a single value
from such cluster that has a highest average similarity with
respect to other values in the selected cluster. The attribute
value selector component 704 may then return the single
value to the issuer of the query (e.g., as an instant answer).

Of course, the attribute value selector component 704
may use other techniques to select a single value for an
identified entity and attribute. For instance, the attribute
value selector component 704 may determine an average
value across all attribute values for the entity identity and
attribute identity included in the fact lookup query. This
average value may then be returned to the user as the instant
answer to the query. In yet another example, the attribute
value selector component 704 can return the attribute value
that appears most often in the relational database 116 in
conjunction with the entity identity and attribute identity (or
equivalents thereof) as an instant answer to the fact lookup
query. Still further, the attribute value selector component
704 can be configured to output multiple attribute values to
the user, wherein such multiple attribute values are extracted
from different data sources. Thus, the issuer of the query can
determine which source she believes is most reliable when
determining or reviewing the attribute value.

10

15

20

25

30

35

40

45

50

55

60

65

10

From the above, it can be ascertained that the system 700
can provide an instant answer to a fact lookup query
proftered by a user. This instant answer can be provided in
line with search results provided to the user responsive to the
user issuing the query. For instance, the instant answer can
be provided most prominently and beneath such instant
answer links to web pages corresponding to the query can be
provided to the user.

With reference now to FIGS. 8-9, various exemplary
methodologies are illustrated and described. While the
methodologies are described as being a series of acts that are
performed in a sequence, it is to be understood that the
methodologies are not limited by the order of the sequence.
For instance, some acts may occur in a different order than
what is described herein. In addition, an act may occur
concurrently with another act. Furthermore, in some
instances, not all acts may be required to implement a
methodology described herein.

Moreover, the acts described herein may be computer-
executable instructions that can be implemented by one or
more processors and/or stored on a computer-readable
medium or media. The computer-executable instructions
may include a routine, a sub-routine, programs, a thread of
execution, and/or the like. Still further, results of acts of the
methodologies may be stored in a computer-readable
medium, displayed on a display device, and/or the like. The
computer-readable medium may be a non-transitory
medium, such as memory, hard drive, CD, DVD, flash drive,
or the like.

Referring now to FIG. 8, an exemplary methodology 800
that facilitates generating a relational database for utilization
in answering fact lookup queries is illustrated. The meth-
odology 800 begins at 802, and at 804 source code of a web
page is searched for a one dimensional table. As described
above, the one dimensional table includes an attribute iden-
tity and an attribute value but is free of an entity identity. At
806, a determination is made regarding whether the source
code of the web page includes a one dimensional table. If it
is determined at 806 that the source code of the web page
does not include a one dimensional table, then the method-
ology 800 proceeds to 808 where a next web page in a search
engine index is selected and the methodology returns to 804.

If at 806 it is determined that the web page includes a one
dimensional table, then at 810 an attribute identity and an
attribute value are extracted from the one dimensional table.
At 812, an entity identity that corresponds to the attribute
identity and the attribute value is inferred. The inference can
be based upon previous queries submitted by users to access
the web page, a known schema corresponding to the web
page, or other data. At 814, the entity identity, the attribute
identity and the attribute value are stored in a relational
database. Specifically, the attribute value can be indexed by
the entity identity and the attribute identity in the relational
database. At 816, a determination is made regarding whether
there are more web pages to be analyzed. If additional pages
are to be analyzed, then the methodology returns to act 808,
where a next web page in a search engine index is selected.
If there are no further pages to select, the methodology 800
completes at 818.

Turning now to FIG. 9, an exemplary methodology 900
for outputting an instant answer to a fact lookup query is
illustrated. The methodology 900 starts at 902, and at 904 a
fact lookup query is received. For example, the fact lookup
query can include an entity identity and an attribute identity.

At 906, keywords in the query are compared with key-
words in a trigger list. The keywords in the trigger list
comprise entity identities and attribute identities. At 908, a

US 9,460,207 B2

11

determination is made regarding whether keywords in the
fact lookup query are included in the trigger list. If the fact
lookup query does not include an entity identity and attribute
identity in the trigger list, then at 910 a conventional web
search is performed. If the received query includes an entity
identity and attribute identity in the trigger list, then the
received query is a fact lookup query and at 912 a relational
database can be searched through utilization of the keywords
in the trigger list.

At 914, an attribute value that corresponds to the entity
identity and attribute identity in the received query are
output to the user as an instant answer. That is, the instant
answer can be displayed prominently on a search results
page. Furthermore, a conventional search can also be under-
taken such that search results are shown beneath the instant
answer. The methodology 900 completes at 916.

Now referring to FIG. 10, a high-level illustration of an
exemplary computing device 1000 that can be used in
accordance with the systems and methodologies disclosed
herein is illustrated. For instance, the computing device
1000 may be used in a system that supports building a
relational database for utilization in answering fact lookup
queries. In another example, at least a portion of the com-
puting device 1000 may be used in a system that supports
answering fact lookup queries subsequent to receipt of a fact
lookup query. The computing device 1000 includes at least
one processor 1002 that executes instructions that are stored
in a memory 1004. The memory 1004 may be or include
RAM, ROM, EEPROM, Flash memory, or other suitable
memory. The instructions may be, for instance, instructions
for implementing functionality described as being carried
out by one or more components discussed above or instruc-
tions for implementing one or more of the methods
described above. The processor 1002 may access the
memory 1004 by way of a system bus 1006. In addition to
storing executable instructions, the memory 1004 may also
store a relational database that comprises entity identities,
attribute identities and attribute values, a trigger list that
comprises entity identities, attribute identities, etc.

The computing device 1000 additionally includes a data
store 1008 that is accessible by the processor 1002 by way
of the system bus 1006. The data store 1008 may be or
include any suitable computer-readable storage, including a
hard disk, memory, etc. The data store 1008 may include
executable instructions, web pages indexed by a search
engine, source code of web pages, a trigger list, a relational
database, etc. The computing device 1000 also includes an
input interface 1010 that allows external devices to com-
municate with the computing device 1000. For instance, the
input interface 1010 may be used to receive instructions
from an external computer device, from a user, etc. The
computing device 1000 also includes an output interface
1012 that interfaces the computing device 1000 with one or
more external devices. For example, the computing device
1000 may display text, images, etc. by way of the output
interface 1012.

Additionally, while illustrated as a single system, it is to
be understood that the computing device 1000 may be a
distributed system. Thus, for instance, several devices may
be in communication by way of a network connection and
may collectively perform tasks described as being per-
formed by the computing device 1000.

As used herein, the terms “component” and “system” are
intended to encompass hardware, software, or a combination
of hardware and software. Thus, for example, a system or
component may be a process, a process executing on a
processor, or a processor. Additionally, a component or

10

15

20

25

30

35

40

45

50

55

60

65

12

system may be localized on a single device or distributed
across several devices. Furthermore, a component or system
may refer to a portion of memory and/or a series of tran-
sistors.
It is noted that several examples have been provided for
purposes of explanation. These examples are not to be
construed as limiting the hereto-appended claims. Addition-
ally, it may be recognized that the examples provided herein
may be permutated while still falling under the scope of the
claims.
What is claimed is:
1. A computer-executable method comprising:
generating a computer-readable index, wherein the index
comprises:
identities of entities;
identities of attributes for the entities; and
values for the attributes, wherein the values for the
attributes are indexed in the computer-readable index
by the identities of the entities and the identities of
the attributes, and wherein generating the computer-
readable index comprises:
accessing a page, the page comprises a table and a title
of the page, the table comprises an identity of an
attribute of an entity and a value of the attribute for
the entity, wherein the table fails to include an
identity of the entity;
identifying the table in source code of the page;
extracting the identity of the attribute and the value of
the attribute from the source code of the page;
responsive to identitying the table in the source code of
the page, inferring the identity of the entity, wherein
inferring the identity of the entity comprises infer-
ring that the identity of the entity includes a keyword
in a title of the page; and
in the computer-readable index, indexing the value of
the attribute by the identity of the entity and the
identity of the attribute.
2. The computer-executable method of claim 1, wherein
inferring the identity of the entity comprises:
accessing a computer-implemented click graph, wherein
the computer-implemented click graph identifies que-
ries issued to a search engine to retrieve the page,
wherein the queries each comprise the keyword;

comparing the keyword with keywords in the title of the
page, wherein the identity of the entity is inferred based
upon the keyword being in both the computer-imple-
mented click graph and the title of the page.

3. The computer-executable method of claim 1, wherein
inferring the identity of the entity comprises:

accessing a known schema for the page, wherein the

identity of the entity is inferred based upon the known
schema for the page.

4. The computer-executable method of claim 1, wherein
generating the computer-readable index further comprises
performing the acts of accessing, identifying, extracting,
inferring, and indexing for a plurality of pages in a search
engine index.

5. The computer-executable method of claim 1, wherein
generating the computer-readable index further comprises
performing the acts of accessing, identifying, extracting,
inferring, and indexing for multiple pages.

6. The computer-executable method of claim 5, further
comprising locating equivalent entity identities in the com-
puter-readable index, wherein the equivalent entity identities
are non-identical entity identities that refer to a same entity.

7. The computer-executable method of claim 5, further
comprising locating equivalent attribute identities in the

US 9,460,207 B2

13

computer-readable index, wherein the equivalent attribute
identities are non-identical attribute identities that refer to a
same attribute.

8. The method of claim 5, further comprising:

receiving a query, wherein the query comprises the iden-

tity of the entity and the identity of the attribute;
searching the computer-readable index utilizing the iden-
tity of the entity and the identity of the attribute; and

outputting the value of the attribute for display on a

display screen based upon the searching of the com-
puter-readable index.
9. The method of claim 8, wherein the value of the
attribute is output as an instant answer in a search engine and
is displayed together with search results for the query.
10. The method of claim 5, further comprising:
receiving a query, wherein the query comprises the iden-
tity of the entity and the identity of the attribute;

using the query, locating multiple attribute values that
correspond to the identity of the entity and the identity
of the attribute in the computer-readable index, the
multiple attribute values comprise the value of the
attribute; and

selecting the value of the attribute from the multiple

attribute values for display on a display.

11. The method of claim 10, wherein selecting the value
of the attribute from the multiple attribute values comprises:

clustering the multiple attribute values into a plurality of

clusters as a function of similarity of the attribute
values to one another;

selecting a cluster with a greatest number of attribute

values assigned thereto, the value of the attribute
included in the cluster; and

selecting the value of the attribute based upon an average

similarity of the value of the attribute with respect to
other values in the cluster.

12. A system comprising:

at least one processor; and

memory that comprises instructions that, when executed

by the at least one processor, cause the at least one
processor to generate a computer-readable index,
wherein generating the computer-readable index com-
prises:
locating a table in source code of a page, the table
comprises an attribute identity of an entity and an
attribute value for the attribute identity and the entity,
wherein the table is free of an identity of the entity;
responsive to locating the table in the source code of the
web page, inferring the identity of the entity, wherein
inferring the identity of the entity comprises:
determining that a title of the page and a header of
the page comprise a same keyword; and
inferring that the keyword is at least a portion of the
identity of the entity based upon the keyword
being included in both the title of the page and the
header of the page; and
responsive to inferring the identity of the entity, in the
computer-readable index, indexing the attribute
value by the entity identity and the attribute identity.

13. The system of claim 12, wherein inferring the identity
of the entity further comprises:

performing a comparison between queries issued to a

search engine to locate the page and keywords in at
least one of the title, the header, or content of the page;
and

inferring the entity identity based upon the comparison.

10

15

20

25

30

35

40

45

50

55

60

65

14

14. The system of claim 12, wherein the page belongs to
a domain with other pages, and wherein inferring the iden-
tity of the entity further comprises:

receiving data indicative of a known schema for pages

belonging to the domain; and

inferring the identity of the entity based upon the known

schema.

15. The system of claim 12, wherein the instructions,
when executed by the at least one processor, further cause
the at least one processor to:

identify multiple identities of the entity that refer to the

entity; and

update the computer-readable index to indicate that the

multiple identities refer to the entity.

16. The system of claim 12, wherein the instructions,
when executed by the at least one processor, further cause
the at least one processor to:

identify multiple attribute identities that refer to the

attribute; and

update the computer-readable index to indicate that the

multiple attribute identities refer to the attribute.

17. The system of claim 12, wherein the instructions,
when executed by the at least one processor, further cause
the at least one processor to:

locate the identity of the entity and the attribute identity

in the relational database based upon a received query,
wherein the query comprises the identity of the entity
and the attribute identity; and

return the attribute value for the entity responsive to

receipt of the query.

18. The system of claim 17, wherein the attribute value is
output on a web page of a search engine as an instant answer
to the query.

19. Computer-readable memory comprising instructions
that, when executed by a processor, cause the processor to
perform acts comprising:

generating a computer-readable index that indexes attri-

bute values by entity identities and attribute identities,

wherein generating the computer-readable index com-

prises:

receiving source code of a page, wherein the source
code of the page comprises a one-dimensional table,
and wherein the one-dimensional table comprises an
identity of an attribute and a value of the attribute for
an entity, wherein the one dimensional table fails to
include an identity of the entity;

comparing queries with at least one of a title of the
page, a header of the page, or a body of the page,
each of the queries comprise a same keyword, each
of the queries issued by users of a search engine to
access the page;

determining that the keyword is included in at least one
of the title of the page, the header of the page, or the
body of the page based upon the comparing;

inferring the identity of the entity based upon the
keyword being included in the at least one of the title
of the page, the header of the page, or the body of the
page; and

indexing the value of the attribute by the identity of the
entity and the identity of the attribute in the com-
puter-readable index.

20. The computer-readable memory of claim 19, the acts
further comprising:

receiving a query, the query includes the identity of the

attribute and the identity of the entity;

US 9,460,207 B2
15

identifying the value of the attribute in the computer-
readable index based upon the identity of the attribute
and the identity of the entity; and

returning the value of the attribute as an instant answer to
the query. 5

16

